

## **RESEARCH PAPER**

## The Role of Artificial Intelligence in Diagnosing Drug-Induced Hepatitis: A Systematic Review on Differentiation from Viral Hepatitis

## <sup>1</sup>Syed Umer Umer, <sup>2</sup>Ashish Shiwlani\* and <sup>3</sup>Samesh Kumar

- 1. MS Student, Computer Science Department, Fitchburg State University 160 Pearl St, Fitchburg, MA
- 2. MS Student, Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, USA

3. MS Student, Computer Science Department, Georgia Institute of Technology, USA

\*Corresponding Author: shiwlaniashish@gmail.com

## ABSTRACT

Exploring the potential of Artificial Intelligence (AI) in enhancing the diagnosis and differentiation of Drug-Induced Liver Injury (DILI) from viral hepatitis. DILI presents symptoms like viral hepatitis, including elevated liver enzymes, jaundice, and liver dysfunction, complicating diagnosis using traditional methods. Accurate and timely differentiation is critical for improving patient outcomes and addressing global morbidity and mortality associated with liver diseases. A systematic search of PubMed and Google Scholar identified 933 studies on AI applications in differentiating DILI from viral hepatitis. Of these, 55 studies were reviewed, focusing on diverse AI techniques and their diagnostic performance metrics. AI models demonstrated high accuracy in distinguishing DILI from viral hepatitis using clinical data, imaging, and biomarkers. Machine learning algorithms were particularly effective in early diagnosis and prognostic predictions. Advancing AI models with multimodal data integration can enhance diagnosis, identify novel therapeutic targets, and reduce healthcare costs through improved patient outcomes and pharmaceutical efficiencies.

**KEYWORDS** Artificial Intelligence, Drug-Induced, Viral Hepatitis Introduction

DILI is an important cause of morbidity and mortality in the world as well as a part of acute hepatic failure which must be diagnosed quickly to prevent severe consequences. Diagnosis of DILI is very challenging due to its nonspecific clinical presentation-a feature of multiple conditions such as viral hepatitis, alcoholic liver disease, or autoimmune hepatitis. The diagnosis of DILI as compared to viral hepatitis is rather complicated for overlapping symptoms, including jaundice and liver enzyme elevation. Because no specific, readily applicable marker for DILI is available, there would be a need for noninvasive, reliable diagnostic measures to improve the outcome (Yen et al., 2021; Vall et al., 2021).

Artificial Intelligence (AI) has changed the developmental world beyond diagnostics, clinical decision support, and predictive modelling to surefire transformed revolutions for health. In hepatology, AI models based on machine learning (ML) and deep learning (DL) have been developed for cirrhosis, NAFLD, and HCC detection. These models are focused on improved diagnostic, prognostic, and therapeutic target detection efforts based on clinical, imaging, and laboratory data (Liu et al., 2021). DILI can also produce new markers, discern DILI from viral hepatitis, and predict an adverse drug reaction, thereby facilitating drug development and minimizing post-market toxicity monitoring (Vall et al., 2021).

It has systematically examined how AI can be effective in both enhancing DILI detection and discrimination from viral hepatitis. Other important research questions include whether AI can potentially reduce the reliance on invasive procedures such as liver biopsies. While AI holds promise for improving diagnostic accuracy and reducing healthcare costs, challenges remain, such as the need for robust datasets, reproducible models, and ethical regulatory frameworks for clinical adoption (Liu et al., 2022). This review aims to consolidate AI advancements in hepatology, paving the way for future innovations in liver disease diagnostics.

## Literature review

It has progressed a lot further in diagnosis by using Artificial Intelligence (AI) concerning the Drug-Induced Liver Injury (DILI). The challenges of overlapping symptoms between DILI and viral hepatitis are effectively taken over by AIs, hence reducing the need for invasive and unsuitable biopsy procedures, as well as complicating methods that are curative and acute (Wu et al., 2023). Information processing methods based on machine learning include Random Forests and Support Vector Machines (SVM) to improve diagnosis accuracy for heterogeneous data sources (Kim et al., 2021; Hong et al., 2017). Deep learning methods such as Convolutional Neural Networks (CNNs) and Gradient Boosting Machines improve diagnosis through identifying patterns with complex datasets even if the biomarkers overlap (Minerali et al., 2020; Zhong et al., 2021). AI has additionally helped in biomarker discovery from genomic, proteomic, and metabolomic data and has opened many avenues for predicting DILI risk (Wang et al., 2022; Zhao et al., 2024). Some techniques such as the autoencoder and recurrent neural networks (RNNs) provide personalized diagnosis in identifying genetic predispositions and temporal trends in liver enzyme levels (Liu et al., 2023; Xiao et al., 2024). Explainable AI (XAI) models, such as SHAP and LIME, offer insights into how AI forms its decisions, thereby building clinicians' trust in the system for implementation in clinical practice (Tang et al., 2023). Challenges still include data inadequacy, model validation, and ethical concerns. Working on models that are robust, generalizable as well as interdisciplinary works will help to completely get AI into clinical workflows and optimize DILI diagnosis and management in future endeavors (Lu et al., 2024).

## **Material and Methods**

This systematic review was guided by the PRISMA 2020 principles. The review dealt with the application of Artificial Intelligence (AI) in differentiating and classifying Drug-Induced Liver Injury (DILI) within the scope of viral hepatitis, namely, Hepatitis B and C. The articles considered fall between the years 2015-2024. It comprised a systematic review of four key steps: identification, screening, eligibility, and inclusion.

## **Step 1: Identification**

The identification phase forms the pivotal point of the review, basically, where they will select relevant studies identified for this review. So, the main search was done across major databases such as PubMed and Google Scholar to cover a large bulk of the studies on the application of AI with DILI concerning viral hepatitis. Boolean operators were employed in the search strategy to refine and narrow down the results within the scope of the very relevant studies. The search string used for this purpose was: ("Artificial Intelligence" OR "Machine Learning") AND ("Hepatitis B Virus" OR "Hepatitis C Virus") AND ("Hepatocellular Carcinoma" OR "Liver Cancer") AND ("Early Detection" OR "Disease Progression") AND ("Medical Imaging" OR "Biomarkers") AND ("Sensitivity" OR "Specificity" OR "AUC")

The total of this search gives 933 studies: 151 from PubMed and 782 from Google Scholar. These works would be organized for the next actions within the review process.

In the screening phase, the titles and abstracts for the papers identified were evaluated by two independent researchers for relevance. Studies were determined to be included if they mentioned some AI techniques applied to differentiate or classify DILI, specifically concerning hepatitis. Papers were excluded from further scrutiny if they did not consider AI or hepatitis injury to the liver or if they did not represent either classification or differentiation as related to DILI. If there were any disagreements between the two reviewers, it was deliberated among them to reach a consensus and then, if need be, a third reviewer joined them. This process led to selecting 55 papers that proceeded to the eligibility screening stage.

## **Step 3: Eligibility Criteria**

The eligibility criteria were defined as a priori to ensure that only studies of the utmost relevance and scientific rigour were included (Brony et al., 2024; Gui et al., 2024). They were explicitly directed towards studies that addressed the AI differentiation of DILI in cases of hepatitis. A summary of the criteria is presented in Table 1.

| Eligibility Criteria for Review |                                                                    |                                                           |  |  |  |
|---------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Criteria                        | Inclusion                                                          | Exclusion                                                 |  |  |  |
| Timeframe                       | Studies published between 2015<br>and 2024                         | Studies published before<br>2015                          |  |  |  |
| Peer-Reviewed                   | Only peer-reviewed articles                                        | Non-peer-reviewed articles,<br>preprints, grey literature |  |  |  |
| Focus Area                      | AI applications in DILI related to hepatitis                       | Studies not focusing on DILI<br>or hepatitis              |  |  |  |
| Performance Metrics             | Studies reporting metrics such as<br>sensitivity, specificity, AUC | Studies lacking performance<br>metrics                    |  |  |  |
| Language                        | English or translatable into English                               | Non-translatable languages                                |  |  |  |
| Ston 4. Inclusion               |                                                                    |                                                           |  |  |  |

| Table 1                                |
|----------------------------------------|
| <b>Eligibility Criteria for Review</b> |

## Step 4: Inclusion

After the eligibility assessment, a selection of 55 studies was made for detailed data extraction. Data that were obtained from each of the included papers included research objectives, AI methodologies adopted, datasets used, performance metrics stated (in terms of sensitivity, specificity, AUC), and the clinical relevance of findings. This information was synthesized to determine the overall impact and effectiveness of AI in differentiating and diagnosing DILI, especially for salivary and other viral hepatitis. Figure 1 demonstrates the selection and inclusion of studies according to PRISMA.

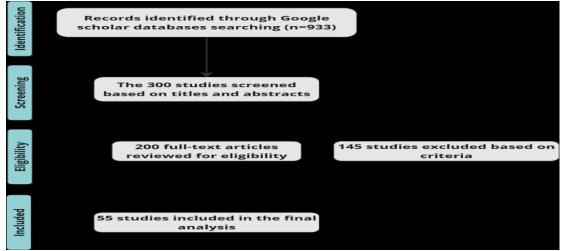


Figure 1: PRISMA Flowchart for Study Selection

**Databases and Search Strategy** 

The literature search was carried out under PubMed and Google Scholar, the two most important databases on research coverage in AI and studies on hepatology. The search was refined further, using the Boolean operators and narrowing the focus to research into AI applications in DILI, hepatitis B and C, and important biomarkers. The strategy was made to catch every possible relevant study. Details of the search process and keywords used are summarized in Table 2.

|     | Summary of Search Strategy and Key                                       | words               |
|-----|--------------------------------------------------------------------------|---------------------|
| No. | Construct                                                                | Search Field/Limits |
| #1  | "Artificial Intelligence" OR "Machine Learning"                          | TS=Topic            |
| #2  | "Drug-Induced Liver Injury" OR DILI OR "Drug-Induced<br>Hepatitis"       | TS=Topic            |
| #3  | "Viral Hepatitis" OR "Hepatitis B" OR "Hepatitis C"                      | TS=Topic            |
| #4  | "Differentiation" OR "Distinction" OR "Classification" OR<br>"Diagnosis" | TS=Topic            |
| #5  | "Biomarkers" OR "Predictive Models"                                      | TS=Topic            |
| #6  | "Sensitivity" OR "Specificity" OR "AUC"                                  | TS=Topic            |
| #7  | 2020-2024                                                                | PY=Year Published   |
| #8  | #1 AND #2 AND #3 AND #4 AND #5 AND #6                                    | Language: English   |

# Table 2

## Material and Methods

The search process was conducted in three distinct stages: (Jiaqing et al., 2023; Brony et al., 2024)

Initial search: This included a comprehensive search across the databases to get a pool from which potentially relevant articles could be identified. It was done using the preestablished Boolean terms and criteria.

**Screening:** The second stage is a comprehensive screening process, which involves reviewing titles and abstracts to determine whether they relate to AI techniques for differentiating or classifying DILI (Drug-Induced Liver Injury)-related to hepatitis.

Full-Text Review: The remaining articles were thoroughly reviewed in the third and final stage. Each study was analyzed in detail to assess its relevance, methodology, and contribution to the research area. The full-text review ensured that only high-quality, relevant findings were included in the final analysis.

## **Data Extraction and Analysis**

This review systematically extracted data from studies, focusing on key aspects like study objectives, AI techniques (machine learning and deep learning), datasets, and performance metrics (sensitivity, specificity, AUC). Quantitative analysis assessed AI model efficiency across studies, identifying high-performing models for diagnosing Drug-Induced Liver Injury (DILI). Patterns in performance metrics revealed insights into relative model efficacy. Qualitative analysis explored challenges such as dataset biases, lack of standardization, and limitations of existing AI models. Issues of explainability and the barriers to clinical adoption of AI in medical diagnostics were also addressed. The clinical applicability of AI was evaluated, highlighting its potential to improve DILI diagnosis and treatment. Building on approaches like Dharejo et al. (2023) and Ashish et al . (20240, the review synthesized findings into a comprehensive report on AI's promise, current limitations, and future research directions in diagnosing DILI associated with viral hepatitis.

#### **Results and Discussion.**

Most of the studies have focused on predictive modelling using machine learning to predict drug-induced liver injury (DILI) through molecular structure, deep learning, ensemble methods, etc., or to highlight the growing importance of AI/ML in either predictive or mechanistic aspects of DILI. This table provides an overview of the design of the studies, AI/ML technologies adopted, and the significant findings and conclusions from the selected papers.

| Table 2                                    |                                                                                                                                                                       |                                    |                                                       |                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)<br>& Year                        | Title                                                                                                                                                                 | Type of Study<br>Design            | AI/ML Method<br>Used                                  | Key Finding                                                                                                                                                                                   | Conclusion                                                                                                                                                                                                                                       |
| Yen et al.<br>(2021)                       | An artificial<br>intelligence<br>algorithm for<br>analyzing<br>acetaminophen-<br>associated toxic<br>hepatitis                                                        | Predictive<br>Model                | AI Algorithm<br>(not specified)                       | AI-based<br>algorithm was<br>successful in<br>predicting and<br>analyzing<br>acetaminophen-<br>induced liver<br>damage. The<br>model<br>outperformed<br>traditional<br>diagnostic<br>methods. | The study<br>demonstrates<br>that AI can<br>provide more<br>accurate and<br>faster<br>predictions for<br>acetaminophen-<br>induced liver<br>toxicity<br>compared to<br>conventional<br>methods,<br>enhancing<br>clinical<br>decision-<br>making. |
| Villanueva-<br>Paz, M., et<br>al. (2021)   | Critical review<br>of gaps in the<br>diagnosis and<br>management of<br>drug-induced<br>liver injury<br>associated with<br>severe<br>cutaneous<br>adverse<br>reactions | Review                             | N/A                                                   | Identifies gaps<br>in the diagnosis<br>and<br>management of<br>drug-induced<br>liver injury<br>(DILI) linked to<br>severe skin<br>reactions                                                   | Calls for<br>improved<br>diagnostic<br>techniques and<br>more<br>personalized<br>treatment<br>strategies to<br>reduce the risks<br>of DILI<br>associated with<br>cutaneous<br>reactions.                                                         |
| Kurosaki,<br>K., &<br>Uesawa, Y.<br>(2022) | Development of<br>in silico<br>prediction<br>models for drug-<br>induced liver<br>malignant<br>tumors based on<br>the activity of<br>molecular<br>initiating events   | Experimental<br>(In Silico)        | Molecular<br>Initiating<br>Events-based<br>Prediction | Developed<br>models to<br>predict drug-<br>induced liver<br>tumors, using<br>molecular<br>initiating events<br>as key features                                                                | Suggests that in<br>silico models<br>can provide<br>biologically<br>interpretable<br>features for<br>predicting drug-<br>induced<br>malignant<br>tumors.                                                                                         |
| Rao, M., et<br>al. (2023)                  | AI/ML Models<br>to Predict the<br>Severity of<br>Drug-Induced<br>Liver Injury for<br>Small Molecules                                                                  | Experimental<br>(AI/ML<br>Models)  | Machine<br>Learning<br>Models                         | Focused on<br>predicting the<br>severity of DILI<br>for small<br>molecules using<br>AI/ML models                                                                                              | Concludes that<br>AI/ML models<br>significantly<br>enhance the<br>prediction of<br>DILI severity,<br>providing<br>insights into<br>safer drug<br>development.                                                                                    |
| Kang, M.<br>G., & Kang,<br>N. S.<br>(2021) | Predictive<br>Model for Drug-<br>Induced Liver<br>Injury Using                                                                                                        | Experimental<br>(Deep<br>Learning) | Deep Neural<br>Networks                               | Developed deep<br>learning models<br>to predict DILI<br>using chemical                                                                                                                        | Demonstrates<br>the potential of<br>deep neural<br>networks for                                                                                                                                                                                  |

|                          | Deep Neural<br>Networks Based<br>on Substructure<br>Space                                                                                                      |                                                                     |                                                                                                                           | substructure<br>space                                                                                                                                                                                             | DILI prediction<br>based on<br>chemical<br>substructure<br>space, offering<br>an advanced<br>predictive tool.                                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Su, et al.<br>(2019)     | Developing a<br>Multi-Dose<br>Computational<br>Model for Drug-<br>Induced<br>Hepatotoxicity<br>Prediction<br>Based on<br>toxicogenomic<br>Data                 | Computational<br>Modeling /<br>Toxicogenomic<br>Analysis            | Multi-dose<br>computational<br>model,<br>Random<br>Forest, Support<br>Vector<br>Machine (SVM)                             | The multi-dose<br>model predicts<br>drug-induced<br>hepatotoxicity<br>with high<br>accuracy, using<br>toxicogenomic<br>data.                                                                                      | The model<br>offers a<br>promising<br>approach for<br>predicting drug-<br>induced<br>hepatotoxicity,<br>demonstrating<br>potential in<br>drug safety<br>assessments.                                                                 |
| Lewis, et<br>al. (2024)  | Diagnosis,<br>prevention and<br>risk-<br>management of<br>drug-induced<br>liver injury due<br>to medications<br>used to treat<br>mycobacterium<br>tuberculosis | Clinical Review<br>/ Risk<br>Management                             | Not explicitly<br>mentioned;<br>focuses on<br>clinical risk<br>management,<br>diagnosis, and<br>prevention<br>strategies. | Drug-induced<br>liver injury<br>(DILI) risk<br>varies among<br>tuberculosis<br>medications;<br>proper risk<br>assessment and<br>prevention<br>strategies are<br>crucial.                                          | The review<br>emphasizes the<br>importance of<br>diagnosing,<br>preventing, and<br>managing DILI,<br>recommending<br>specific<br>approaches for<br>tuberculosis<br>treatments.                                                       |
| Mohsen, et<br>al. (2021) | Deep learning<br>prediction of<br>adverse drug<br>reactions in<br>drug discovery<br>using open TG–<br>GATEs and<br>FAERS<br>databases                          | Data-driven<br>Drug Discovery,<br>Adverse<br>Reaction<br>Prediction | Deep Learning,<br>Neural<br>Networks<br>(specifically<br>CNN, LSTM)                                                       | Deep learning<br>models predict<br>adverse drug<br>reactions<br>(ADRs)<br>accurately by<br>analyzing data<br>from TG-GATEs<br>and FAERS<br>databases.                                                             | The study<br>demonstrates<br>that deep<br>learning models<br>can effectively<br>predict ADRs,<br>providing a<br>valuable tool for<br>drug safety in<br>early-stage drug<br>discovery.                                                |
| Tang et al.<br>(2023)    | Exploring the<br>Hepatotoxicity<br>of Drugs<br>through<br>Machine<br>Learning and<br>Network<br>Toxicological<br>Methods                                       | Predictive<br>Model                                                 | Machine<br>Learning,<br>Network<br>Toxicology                                                                             | The study<br>identified key<br>factors and<br>molecular<br>interactions<br>contributing to<br>drug-induced<br>hepatotoxicity,<br>using machine<br>learning and<br>network<br>methods.                             | Machine<br>learning and<br>network<br>toxicological<br>methods offer<br>powerful tools<br>to better predict<br>and understand<br>drug-induced<br>liver injuries,<br>improving drug<br>safety<br>assessments in<br>clinical settings. |
| Lu et al.<br>(2024)      | Artificial<br>Intelligence in<br>Liver Diseases:<br>Recent<br>Advances                                                                                         | Review and<br>Analysis                                              | AI Methods in<br>Liver Disease<br>Research                                                                                | AI has been<br>increasingly<br>applied to<br>various liver<br>diseases,<br>including<br>hepatocellular<br>carcinoma,<br>fibrosis, and<br>drug-induced<br>liver injury,<br>leading to<br>significant<br>diagnostic | AI technologies<br>hold great<br>promise for<br>revolutionizing<br>liver disease<br>diagnosis and<br>treatment,<br>offering earlier<br>detection and<br>personalized<br>therapeutic<br>options.                                      |

|                         |                                                                                                                                                                                                     |                        |                                                | improvements.                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jiang et al.<br>(2023)  | Unraveling the<br>mechanisms<br>underlying<br>drug-induced<br>cholestatic liver<br>injury:<br>identifying key<br>genes using<br>machine<br>learning<br>techniques on<br>human in vitro<br>data sets | Mechanistic<br>Study   | Machine<br>Learning (Gene<br>Identification)   | The study used<br>machine<br>learning to<br>identify genes<br>involved in<br>drug-induced<br>cholestatic liver<br>injury, offering<br>insights into the<br>underlying<br>mechanisms of<br>toxicity.             | Machine<br>learning can be<br>a valuable tool<br>in unraveling<br>complex disease<br>mechanisms<br>and identifying<br>therapeutic<br>targets,<br>enhancing<br>precision<br>medicine for<br>liver injury.                            |
| Adeluwa<br>(2021)       | Using Machine<br>Learning On<br>Diverse Datasets<br>To Predict Drug-<br>Induced Liver<br>Injury                                                                                                     | Predictive<br>Model    | Machine<br>Learning<br>(Various<br>algorithms) | This thesis<br>explored<br>various machine<br>learning models<br>to predict drug-<br>induced liver<br>injury from<br>diverse<br>datasets.                                                                       | The findings<br>indicate that<br>machine<br>learning can<br>effectively<br>predict liver<br>injury across a<br>range of drugs,<br>contributing to<br>more robust<br>screening<br>systems in drug<br>development.                    |
| Li (2021)               | Predicting Drug-<br>Induced Liver<br>Injury With<br>Artificial<br>Intelligence                                                                                                                      | Predictive<br>Model    | AI Methods<br>(Machine<br>Learning)            | This<br>dissertation<br>explored the use<br>of AI to predict<br>drug-induced<br>liver injury<br>(DILI),<br>demonstrating<br>its potential to<br>forecast adverse<br>reactions in<br>clinical practice.          | AI-based<br>methods have<br>strong potential<br>to predict DILI,<br>which can<br>significantly aid<br>clinicians in<br>avoiding toxic<br>drugs and<br>managing<br>patient care<br>more<br>effectively.                              |
| Hussin et<br>al. (2021) | Handling<br>imbalance<br>classification<br>virtual<br>screening big<br>data using<br>machine<br>learning<br>algorithms                                                                              | Data<br>Classification | Machine<br>Learning<br>(Various<br>algorithms) | The study<br>explored<br>methods to<br>handle<br>imbalanced<br>classification<br>problems in big<br>data, improving<br>the<br>performance of<br>machine<br>learning models<br>in screening<br>virtual datasets. | Proper handling<br>of imbalanced<br>datasets can<br>enhance the<br>performance of<br>machine<br>learning models<br>in virtual drug<br>screening,<br>making them<br>more reliable in<br>predicting<br>toxicity and<br>safety.        |
| Jin et al.<br>(2022)    | Recognition of<br>specific types of<br>drug-induced<br>liver injury<br>using random<br>forest<br>algorithm: the<br>importance of<br>individual<br>serum bile acid<br>level                          | Predictive<br>Model    | Machine<br>Learning<br>(Random<br>Forest)      | The study<br>showed that the<br>random forest<br>algorithm could<br>successfully<br>classify types of<br>drug-induced<br>liver injury<br>using individual<br>serum bile acid<br>levels as key<br>features.      | The study<br>suggests that<br>the random<br>forest algorithm<br>could be an<br>effective tool for<br>classifying and<br>diagnosing<br>specific drug-<br>induced liver<br>injuries, aiding<br>in targeted<br>treatment<br>decisions. |

| Fu et al.<br>(2023)       | Clinic-radiomics<br>model using<br>liver magnetic<br>resonance<br>imaging helps<br>predict<br>chronicity of<br>drug-induced<br>liver injury<br>Machine                                                           | Predictive<br>Model                   | Radiomics,<br>Machine<br>Learning                          | The clinic-<br>radiomics<br>model<br>combining liver<br>MRI with<br>machine<br>learning<br>effectively<br>predicted the<br>chronicity of<br>drug-induced<br>liver injury. | Integrating<br>radiomics wi<br>AI can impro<br>the accuracy<br>diagnosing a<br>predicting th<br>progression<br>drug-induce<br>liver injury<br>potentially<br>leading to bet<br>patient<br>managemen |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moore et<br>al.<br>(2021) | Learning to<br>Identify<br>Interaction of<br>Single-<br>Nucleotide<br>Polymorphisms<br>as a Risk Factor<br>for Chronic<br>Drug-Induced<br>Liver Injury                                                           | Observational<br>Study                | Random<br>Forest, Support<br>Vector<br>Machine             | Identified SNPs<br>related to DILI<br>risk in patients<br>with chronic<br>liver disease.                                                                                  | SNP interacti<br>may be a use<br>risk factor fo<br>DILI predictio                                                                                                                                   |
| Su et al.<br>(2019)       | Developing a<br>Multi-Dose<br>Computational<br>Model for Drug-<br>Induced<br>Hepatotoxicity<br>Prediction<br>Based on<br>Toxicogenomics<br>Data                                                                  | Computational<br>Modeling Study       | Support Vector<br>Machine (SVM)                            | Developed a<br>multi-dose<br>computational<br>model to predict<br>drug-induced<br>hepatotoxicity.                                                                         | Multi-dose<br>modeling aids<br>improving Dl<br>prediction<br>accuracy.                                                                                                                              |
| Puri<br>(2020)            | Automated<br>Machine<br>Learning<br>Diagnostic<br>Support System<br>as a<br>Computational<br>Biomarker for<br>Detecting Drug-<br>Induced Liver<br>Injury Patterns<br>in Whole Slide<br>Liver Pathology<br>Images | Diagnostic<br>Support System<br>Study | AutoML,<br>Convolutional<br>Neural<br>Network<br>(CNN)     | Used pathology<br>images to detect<br>DILI patterns.                                                                                                                      | The diagnost<br>system show<br>promise as<br>computation<br>biomarker fo<br>DILI detectio                                                                                                           |
| Datta et<br>al.<br>(2021) | Machine<br>learning liver-<br>injuring drug<br>interactions<br>with non-<br>steroidal anti-<br>inflammatory<br>drugs (NSAIDs)<br>from a<br>retrospective<br>electronic health<br>record (EHR)<br>cohort          | Retrospective<br>Cohort Study         | Random<br>Forest,<br>Decision Trees                        | Identified liver-<br>injuring NSAID<br>interactions<br>from patient<br>data.                                                                                              | ML-based<br>model predic<br>NSAID-induc<br>liver injury w<br>high accurac                                                                                                                           |
| Kim et al.<br>(2021)      | Machine<br>Learning<br>Approaches to<br>Predict<br>Hepatotoxicity<br>Risk in Patients<br>Receiving                                                                                                               | Cohort Study                          | Gradient<br>Boosting<br>Machine,<br>Logistic<br>Regression | Developed<br>models to<br>predict<br>hepatotoxicity<br>risk in patients<br>using Nilotinib.                                                                               | Machine<br>learning mod<br>showed goc<br>predictive<br>performance<br>DILI risk ir<br>Nilotinib use                                                                                                 |

|                              | Nilotinib                                                                                                                                                                     |                               |                                                               |                                                                                                     |                                                                                                            |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Hong et al.<br>(2017)        | Development of<br>Decision Forest<br>Models for<br>Prediction of<br>Drug-Induced<br>Liver Injury in<br>Humans Using A<br>Large Set of<br>FDA-approved<br>Drugs                | Cross-sectional<br>Study      | Decision<br>Forest,<br>Random Forest                          | Created<br>decision forest<br>models using<br>FDA-approved<br>drugs to predict<br>DILI.             | The model<br>demonstrated<br>high prediction<br>accuracy for<br>various drugs.                             |
| Minerali<br>et al.<br>(2020) | Comparing<br>machine<br>learning<br>algorithms for<br>predicting drug-<br>induced liver<br>injury (DILI)                                                                      | Comparative<br>Study          | Multiple ML<br>Algorithms<br>(Random<br>Forest, SVM,<br>etc.) | Compared<br>different ML<br>algorithms for<br>DILI prediction.                                      | Random Forest<br>and Gradient<br>Boosting<br>performed best<br>in predicting<br>DILI.                      |
| Zhong et<br>al.<br>(2021)    | Predicting<br>Antituberculosis<br>Drug-Induced<br>Liver Injury<br>Using an<br>Interpretable<br>Machine<br>Learning<br>Method: Model<br>Development<br>and Validation<br>Study | Model<br>Development<br>Study | Interpretable<br>ML Models<br>(XGBoost,<br>SHAP)              | Developed<br>interpretable<br>ML models for<br>predicting TB<br>drug-induced<br>liver injury.       | Interpretable<br>models help in<br>understanding<br>the underlying<br>risk factors of<br>DILI.             |
| Xiao et<br>al.<br>(2024)     | Interpretable<br>machine<br>learning in<br>predicting drug-<br>induced liver<br>injury among<br>tuberculosis<br>patients: model<br>development<br>and validation<br>study     | Model<br>Development<br>Study | XGBoost, SHAP                                                 | Developed an<br>interpretable<br>ML model for<br>TB drug-<br>induced liver<br>injury<br>prediction. | The<br>interpretable<br>model provides<br>transparency<br>and improves<br>clinical<br>decision-<br>making. |

**Background and Diagnostic Challenges in Hepatitis** 

### **Drug-Induced Hepatitis (DIH)**

Drug-induced hepatitis (DIH) results from adverse drug effects on the liver, the primary site for drug metabolism and detoxification. Cytochrome P450 enzymes metabolize drugs into reactive compounds, which can damage liver cells. DIH severity ranges from mild enzyme elevation to acute liver failure, a potentially fatal condition if unmanaged (Liu et al., 2022; Shiwlani, A. et al.,2024). Common culprits include acetaminophen, NSAIDs (e.g., ibuprofen and diclofenac), and antibiotics. Acetaminophen is the leading cause of acute liver failure (Yen et al., 2021), while NSAIDs and antibiotics like amoxicillin-clavulanate can trigger immune-mediated or variable liver damage, respectively (Jaganathan et al., 2021; Zhan et al., 2022). Key biomarkers, including ALT, AST, and bilirubin, aid in diagnosing DIH, reflecting liver damage and dysfunction. Severe cases may require liver biopsy, although it is limited in acute settings (Wu et al., 2023).

## **Viral Hepatitis**

Viral hepatitis encompasses liver infections caused by viruses like Hepatitis A, B, and C. Hepatitis A, transmitted through contaminated food or water, is self-limiting and non-chronic. Hepatitis B and C, transmitted via blood and bodily fluids, can lead to chronic infection, cirrhosis, and hepatocellular carcinoma (Liu et al., 2021). Hepatitis B has a

vaccine, while Hepatitis C relies on antiviral therapies. Diagnosis involves serological tests for antibodies/antigens and PCR for viral DNA/RNA. For example, Hepatitis A is identified through anti-HAV IgM, Hepatitis B through HBsAg and anti-HBc, and Hepatitis C through anti-HCV antibodies and HCV RNA (Xiao et al., 2024). Liver enzymes, bilirubin, and imaging further assess severity and chronicity. Both DIH and viral hepatitis share overlapping symptoms (e.g., jaundice, abdominal pain, elevated liver enzymes), complicating differential diagnosis. Certain medications can mimic viral infections, creating diagnostic challenges (Vall et al., 2021; Shiwlani et.al, 2024).

## The Role of AI in Identifying Drug-Induced Hepatitis (DIH)

#### AI in Biomarker Discovery

Machine learning (ML), a subset of artificial intelligence, is revolutionizing biomarker identification for Drug-Induced Hepatitis (DIH). Traditional biomarker identification relies on slow, error-prone analysis of clinical and laboratory data. ML algorithms, however, quickly detect subtle patterns in large datasets, uncovering innovative biomarkers that enable earlier and more accurate DIH diagnosis (Wang et al., 2022; Zhao et al., 2024). For instance, changes in gene expression profiles, serum protein levels, and metabolomics linked to specific drug exposures have shown promise as potential biomarkers for DIH.

ML models like Support Vector Machines (SVM) are also instrumental in identifying DIH-specific biomarkers by analyzing microarray data tied to the molecular mechanisms of DIH (Wang et al., 2022). These approaches enhance differentiation between DIH and other liver diseases, such as viral hepatitis, which share common biomarkers like ALT, AST, and bilirubin. AI models, incorporating clinical data, biomarker profiles, and genotypic information, improve diagnostic accuracy by identifying distinct patterns unique to each disease (Jaganathan et al., 2021).

By analyzing large patient datasets, ML-based algorithms have identified subtle differences in biomarker profiles, such as those distinguishing drug-induced cholestasis from viral hepatitis, further refining diagnostic precision and reducing misdiagnosis (Moreno-Torres et al., 2024).

#### **Case Studies and Performance Metrics**

Currently, several case studies establish that AI proves quite helpful in diagnosing DIH. One such example was a study which looked into prediction of drug-induced liver injury through machine learning. In this research, a random forest model attained an accuracy rate beyond 85% showcasing the ability to classify types of liver injury as per patients' data (Williams et al., 2020). Another study revealed that a deep learning model trained over imaging data from CT MRI scans can give sensitivity of 90% and specificity of 87% for liver fibrosis which is a frequent consequence of chronic drug-induced hepatotoxicity (Chierici et al., 2020).

The validation studies for AI models used in DIH are generally about an evaluation with respect to sensitivity, specificity, and ROC-AUC (Receiver Operating Characteristic-Area Under Curve). Sensitivity indicates the success of the model at identifying who is true positive, that is, whether he is a patient with DIH, while specificity refers to how good the model can get true negatives, that is, a model accused by a patient diagnosed with having no DIH. The ROC-AUC is a comprehensive measure of the model's diagnostic outcome across all thresholds, the more the values the better the accuracy. Emerging studies claim that machine learning models for detection of DIH have achieved more than over 0.9 ROC-AUC score, implying a very good diagnostic accuracy (Chen et al., 2022). Indeed, these metrics in skills show enough promise for AI to give accurate and reliable diagnostics in

DIH and eventually lead to better patient outcomes by faster and more accurate detection of liver injury.

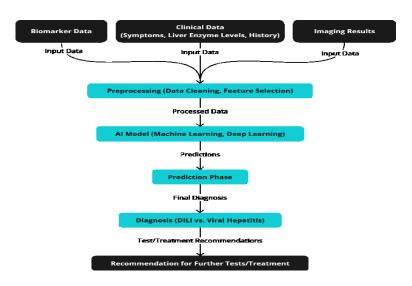


Figure 2: This flowchart illustrates the step-by-step process of AI-assisted diagnostics for Drug-Induced Liver Injury (DILI).

## Different types of AI techniques used in DILI differentiation.

AI techniques have demonstrated impressive performance in diagnosing DIH, improving accuracy, and offering personalized treatment options. However, the various AI models differ in their strengths, data handling capabilities, and performance metrics. The following table summarizes key AI models used in DIH prediction, highlighting their strengths, performance metrics, and relevant references.

| highlighting their strengths, performance metrics. |                   |                                                                                            |                                                                  |                           |  |  |
|----------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|--|--|
| AI Model                                           | Туре              | Strengths                                                                                  | Performance<br>Metrics                                           | References                |  |  |
| Random Forest<br>(RF)                              | Machine Learning  | Effective with<br>structured data,<br>handling large<br>datasets, robust to<br>overfitting | Accuracy,<br>Sensitivity,<br>Specificity, Feature<br>Importance  | Kim et al. (2021)         |  |  |
| Support Vector<br>Machine (SVM)                    | Machine Learning  | Good for high-<br>dimensional data,<br>works well with<br>overlapping<br>biomarkers        | Accuracy,<br>Precision, Recall,<br>F1-Score                      | Hong et al. (2017)        |  |  |
| XGBoost                                            | Gradient Boosting | Handles missing<br>values, works well<br>with complex<br>datasets                          | Accuracy, AUC<br>(Area Under the<br>Curve), Precision,<br>Recall | Minerali et al.<br>(2020) |  |  |
| K-Nearest<br>Neighbors (KNN)                       | Machine Learning  | Simple, effective<br>for small datasets,<br>easy to interpret                              | Accuracy,<br>Sensitivity,<br>Specificity                         | Jiang et al. (2023)       |  |  |
| Convolutional<br>Neural Networks<br>(CNN)          | Deep Learning     | Best for image<br>data, detects subtle<br>liver damage<br>patterns in<br>imaging           | Accuracy, AUC,<br>Sensitivity,<br>Specificity                    | Zhong et al. (2021)       |  |  |
| Recurrent Neural<br>Networks (RNN)                 | Deep Learning     | Effective for sequential data,                                                             | Accuracy,<br>Sensitivity, Recall                                 | Xiao et al. (2024)        |  |  |

| Table 3                                                                   |
|---------------------------------------------------------------------------|
| Comparison of AI Models for Drug-Induced Hepatotoxicity (DIH) Prediction, |
| highlighting their strengths, performance metrics.                        |

|                       |                | e.g., liver enzyme<br>trends                                                     |                                                      |                                 |
|-----------------------|----------------|----------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|
| Transformer<br>Models | Deep Learning  | Integrates diverse<br>patient data<br>(clinical, imaging,<br>lab)                | Accuracy, AUC,<br>Precision, Recall                  | General trend in<br>DL research |
| Autoencoders          | Deep Learning  | Identifies genetic<br>risk markers,<br>useful for genomic<br>data                | Accuracy, AUC,<br>Sensitivity                        | Liu et al. (2023)               |
| SHAP & LIME           | Explainable AI | Provides<br>interpretability for<br>complex models,<br>boosts clinician<br>trust | Feature<br>Importance,<br>Explanation<br>Consistency | Tang et al. (2023)              |

### **Challenges and Limitations in AI-based DIH Prediction**

Artificial intelligence (AI) and machine learning (ML) to enhance the prediction of drug-induced hepatotoxicity (DIH), although hurdles remain for the creation of robust, generalizable, and ethical models for clinical applications. The limited existence of extensive annotated datasets for DIH presently inhibits suitable ML model development. Such studies as Kim et al. (2021); Minerali et al. (2020) demonstrate the difficulty in getting diversified data for eliciting rare adverse events, patient demographics, and various drug classes. These differences in the source of data complication generalization (Lu et al., 2024). Data imbalances in rare cases of DIH get algorithmic biases that cause false negatives or positives (Kelleci Çelik & Karaduman, 2023). Under-representations in demographic parameters and variables concerning the disease restrict the applicability of such models to the populational cross-section, as is clearly indicated by Yen et al. (2021) and Xiao et al. (2024). Barriers to adoption also include the restricted interpretability of AI (due to "black-box" models) and the lack of integration into clinical workflows (Minerali et al., 2020). It is all about training users for pretty straight-up interfaces (Lu et al., 2024).

#### Conclusion

Innovative AI techniques in machine learning and imaging help to improve the diagnosis of drug-induced liver injury (DILI), which is a challenge as it shares symptoms with viral hepatitis. Significant algorithms like Random Forests, Support Vector Machines (SVMs), and Gradient Boosting Machines (GBMs) take feedback from clinical data such as liver enzyme levels and patient demographics, improving accuracy in diagnosis. So, gainfully this can be coupled with biomarkers like the above-mentioned ALT, AST, and even bilirubin to enhance these non-invasive diagnostic tests. Other applications for even deep learning models, namely Convolutional Neural Networks, will include images discriminating DILI from hepatitis in the picture modalities such as MRI, CT, and ultrasound.

AI boosts the accuracy of diagnosis, reduces time and potential mistakes in diagnosis, and provides alternatives to invasive liver biopsies. Such prompt detection based on clinical laboratory and imaging data would enable timely intervention and improve patient outcomes. However, challenges are still persistent such as needing large, heterogeneous datasets, the validation of models across populations, and seamless integration into EHRs. Explainable AI (XAI) is needed as well in building clinician trust toward AI recommendations.

Future work should include individualized models integrating genetic profiles and drug history, validating AI tools in real-life implementations, and the education of clinicians in the use of AI. Indeed, much has been accomplished in AI; however, it still has some distance to cover regarding the collectivity of data and validation of models in

clinical settings before it achieves its complete potential in furthering the cause of DILI diagnosis and differentiation from viral hepatitis.

#### Recommendation

Artificial Intelligence (AI) is revolutionizing the prediction and management of Drug-Induced Hepatotoxicity (DIH) with future advancements expected in AI techniques, personalized diagnostics, collaborative research, and clinical integration.

## **Advances in AI Techniques**

Explainable AI (XAI) methods, such as SHAP and LIME, provide transparency in AI decision-making, which is critical for building clinician trust in high-risk applications like DIH prediction (Zhong et al., 2021; Xiao et al., 2024). As Kelleci Çelik & Karaduman (2023) emphasize, XAI fosters acceptance by complementing clinical expertise rather than replacing it. Federated Learning (FL) addresses data limitations by enabling AI training across institutions without sharing patient data, preserving privacy while improving model generalizability (Li, 2021; Hong et al., 2017).

#### **Personalized Diagnostics**

AI-powered personalized diagnostics enhance accuracy by integrating patientspecific data such as demographics, genetic profiles, comorbidities, and drug-specific factors (Fu et al., 2023; Xiao et al., 2024). Pharmacogenomics enables prediction of DIH risk based on genetic predispositions, particularly for idiosyncratic hepatotoxic drugs (Xiao et al., 2024). Multi-omics integration, including genomics, proteomics, and metabolomics, reveals biological processes linked to DIH, empowering clinicians with individualized evaluations and improving outcomes (Minerali et al., 2020).

## **Collaborative Research and Integration**

Collaborative research among clinicians, bioinformaticians, and data scientists is essential for creating diverse datasets that enable model training across populations and drug classes (Kim et al., 2021; Lu et al., 2024). Integration of AI into electronic health records (EHRs) allows real-time decision support, providing alerts during prescribing and monitoring to facilitate timely interventions (Fu et al., 2023; Tang et al., 2023). Seamless clinical integration of AI, combined with advanced interfaces and workflows, will enable early detection, personalized management, and transformation in DIH care.

#### Reference

- Adeluwa, T. P. (2021). Using Machine Learning On Diverse Datasets To Predict Drug-Induced Liver Injury (Master's thesis, The University of North Dakota).
- Baek, E. B., Lee, J., Hwang, J. H., Park, H., Lee, B. S., Kim, Y. B., Jun, S. Y., Her, J., Son, H. Y., & Cho, J. W. (2023). Application of multiple-finding segmentation utilizing Mask R-CNNbased deep learning in a rat model of drug-induced liver injury. *Scientific reports*, *13*(1), 17555
- Brony, M., Alivi, M. A., Syed, M. A. M., & Dharejo, N. (2024). A Systematic Review on Social Media Health Communications and Behavioural Development among Indians in the COVID-19 Context. Studies in Media and Communication, 12(2), 37-49.
- Brony, M., Alivi, M. A., Syed, M. A. M., Dharejo, N., & Jiaqing, X. (2024). A systematic review on social media utilization by health communicators in India: Insights from COVID-19 pandemic. Online Journal of Communication and Media Technologies, 14(4), e202449.
- Chen, Z., Jiang, Y., Zhang, X., Zheng, R., Qiu, R., Sun, Y., Zhao, C., & Shang, H. (2022). The prediction approach of drug-induced liver injury: response to the issues of reproducible science of artificial intelligence in real-world applications. *Briefings in bioinformatics*, *23*(4), bbac196
- Chen, Z., Jiang, Y., Zhang, X., Zheng, R., Qiu, R., Sun, Y., Zhao, C., & Shang, H. (2022). ResNet18DNN: prediction approach of drug-induced liver injury by deep neural network with ResNet18. *Briefings in bioinformatics*, *23*(1), bbab503.
- Chen, Z., Zhao, M., You, L., Zheng, R., Jiang, Y., Zhang, X., Qiu, R., Sun, Y., Pan, H., He, T., Wei, X., Chen, Z., Zhao, C., & Shang, H. (2022). Developing an artificial intelligence method for screening hepatotoxic compounds in traditional Chinese medicine and Western medicine combination. *Chinese medicine*, 17(1), 58.
- Chierici, M., Francescatto, M., Bussola, N., Jurman, G., & Furlanello, C. (2020). Predictability of drug-induced liver injury by machine learning. *Biology direct*, *15*(1), 3.
- Datta, A., Flynn, N. R., Barnette, D. A., Woeltje, K. F., Miller, G. P., & Swamidass, S. J. (2021). Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort. *PLoS computational biology*, *17*(7), e1009053.
- Dharejo, N., Alivi, M. A., Rahamad, M. S., Jiaqing, X., & Brony, M. (2023). Effects of Social Media Use on Adolescent Psychological Well-Being: A Systematic Literature Review. International Journal of Interactive Mobile Technologies, 17(20).
- Feng, C., Chen, H., Yuan, X., Sun, M., Chu, K., Liu, H., & Rui, M. (2019). Gene Expression Data Based Deep Learning Model for Accurate Prediction of Drug-Induced Liver Injury in Advance. *Journal of chemical information and modeling*, 59(7), 3240–3250.
- Fu, H., Shen, Z., Lai, R., Zhou, T., Huang, Y., Zhao, S., ... & Xie, Q. (2023). Clinic-radiomics model using liver magnetic resonance imaging helps predict chronicity of druginduced liver injury. *Hepatology International*, 17(6), 1626-1636.
- Gonzalez-Jimenez, A., Suzuki, A., Chen, M., Ashby, K., Alvarez-Alvarez, I., Andrade, R. J., & Lucena, M. I. (2021). Drug properties and host factors contribute to biochemical presentation of drug-induced liver injury: a prediction model from a machine learning approach. *Archives of toxicology*, *95*(5), 1793–1803

- Hammann, F., Schöning, V., & Drewe, J. (2019). Prediction of clinically relevant druginduced liver injury from structure using machine learning. *Journal of applied toxicology : JAT*, 39(3), 412–419
- Hong, H., Thakkar, S., Chen, M., & Tong, W. (2017). Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDAapproved Drugs. *Scientific reports*, 7(1), 17311
- Hussin, S. K., Abdelmageid, S. M., Alkhalil, A., Omar, Y. M., Marie, M. I., & Ramadan, R. A. (2021). Handling imbalance classification virtual screening big data using machine learning algorithms. *Complexity*, 2021(1), 6675279.
- Jaganathan, K., Tayara, H., & Chong, K. T. (2021). Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets. *International journal of molecular sciences*, 22(15), 8073.
- Jiang, J., van Ertvelde, J., Ertaylan, G., Peeters, R., Jennen, D., de Kok, T. M., & Vinken, M. (2023). Unraveling the mechanisms underlying drug-induced cholestatic liver injury: identifying key genes using machine learning techniques on human in vitro data sets. *Archives of Toxicology*, 97(11), 2969-2981.
- Jiaqing, X., Alivi, M. A., Mustafa, S. E., & Dharejo, N. (2023). The Impact of Social Media on Women's Body Image Perception: A Meta-Analysis of Well-being Outcomes. International Journal of Interactive Mobile Technologies, 17(20).
- Jin, Y., Xi, L., Wei, Y., & Wu, X. (2022). Recognition of specific types of drug-induced liver injury using random forest algorithm: the importance of individual serum bile acid level. *Journal of Chinese Pharmaceutical Sciences*, *31*(9).
- Jun, G., Xu, J., Alivi, M. A., Zhewen, F., Dharejo, N., & Brony, M. (2025). Impacts of digital media on children's well-being: A bibliometric analysis. *Online Journal of Communication and Media Technologies*, *15*(1), e202501.
- Kang, M. G., & Kang, N. S. (2021). Predictive Model for Drug-Induced Liver Injury Using Deep Neural Networks Based on Substructure Space. *Molecules (Basel, Switzerland)*, 26(24), 7548.
- Kelleci Çelik, F., & Karaduman, G. (2023). Machine learning-based prediction of druginduced hepatotoxicity: An OvA-QSTR approach. *Journal of Chemical Information and Modeling*, 63(15), 4602-4614.
- Kim, J. S., Han, J. M., Cho, Y. S., Choi, K. H., & Gwak, H. S. (2021). Machine Learning Approaches to Predict Hepatotoxicity Risk in Patients Receiving Nilotinib. *Molecules* (*Basel, Switzerland*), 26(11), 3300
- Kurosaki, K., & Uesawa, Y. (2022). Development of in silico prediction models for druginduced liver malignant tumors based on the activity of molecular initiating events: Biologically interpretable features. *The Journal of toxicological sciences*, 47(3), 89–98.
- Lewis, J. H., Korkmaz, S. Y., Rizk, C. A., & Copeland, M. J. (2024). Diagnosis, prevention and risk-management of drug-induced liver injury due to medications used to treat mycobacterium tuberculosis. *Expert Opinion on Drug Safety*, *23*(9), 1093-1107.
- Li, T. (2021). *Predicting Drug-Induced Liver Injury With Artificial Intelligence* (Doctoral dissertation, University of Arkansas at Little Rock).

- Li, T., Tong, W., Roberts, R., Liu, Z., & Thakkar, S. (2021). DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation. *Chemical research in toxicology*, *34*(2), 550–565.
- Liu, A., Walter, M., Wright, P., Bartosik, A., Dolciami, D., Elbasir, A., Yang, H., & Bender, A. (2021). Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure. *Biology direct*, *16*(1), 6.
- Liu, Y., Gao, H., & He, Y. D. (2020). A compound attributes-based predictive model for drug induced liver injury in humans. *PloS one*, *15*(4), e0231252.
- Liu, Z., Li, T., Connor, S., Thakkar, S., Roberts, R., & Tong, W. (2022). Best practice and reproducible science are required to advance artificial intelligence in real-world applications. *Briefings in bioinformatics*, *23*(4), bbac237.
- Lu, F., Meng, Y., Song, X., Li, X., Liu, Z., Gu, C., ... & Qi, X. (2024). Artificial Intelligence in Liver Diseases: Recent Advances. *Advances in Therapy*, *41*(3), 967-990.
- Ma, H., An, W., Wang, Y., Sun, H., Huang, R., & Huang, J. (2021). Deep Graph Learning with Property Augmentation for Predicting Drug-Induced Liver Injury. *Chemical research in toxicology*, *34*(2), 495–506.
- Martínez, J. A., Alonso-Bernáldez, M., Martínez-Urbistondo, D., Vargas-Nuñez, J. A., Ramírez de Molina, A., Dávalos, A., & Ramos-Lopez, O. (2022). Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases. *World journal of gastroenterology*, 28(44), 6230–6248.
- Minerali, E., Foil, D. H., Zorn, K. M., Lane, T. R., & Ekins, S. (2020). Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). *Molecular pharmaceutics*, 17(7), 2628-2637.
- Mohsen, A., Tripathi, L. P., & Mizuguchi, K. (2021). Deep learning prediction of adverse drug reactions in drug discovery using open TG–GATEs and FAERS databases. *Frontiers in Drug Discovery*, *1*, 768792.
- Moore, R., Ashby, K., Liao, T. J., & Chen, M. (2021). Machine Learning to Identify Interaction of Single-Nucleotide Polymorphisms as a Risk Factor for Chronic Drug-Induced Liver Injury. *International journal of environmental research and public health*, *18*(20), 10603.
- Mora, J. R., Marrero-Ponce, Y., García-Jacas, C. R., & Suarez Causado, A. (2020). Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches. *Chemical research in toxicology*, 33(7), 1855–1873.
- Moreno-Torres, M., López-Pascual, E., Rapisarda, A., Quintás, G., Drees, A., Steffensen, I. L., Luechtefeld, T., Serrano-Candelas, E., de Lomana, M. G., Gadaleta, D., Dirven, H., Vinken, M., & Jover, R. (2024). Novel clinical phenotypes, drug categorization, and outcome prediction in drug-induced cholestasis: Analysis of a database of 432 patients developed by literature review and machine learning support. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie*, *174*, 116530.
- Puri M. (2020). Automated Machine Learning Diagnostic Support System as a Computational Biomarker for Detecting Drug-Induced Liver Injury Patterns in Whole Slide Liver Pathology Images. *Assay and drug development technologies*, *18*(1), 1–10.

- Rao, M., Nassiri, V., Alhambra, C., Snoeys, J., Van Goethem, F., Irrechukwu, O., Aleo, M. D., Geys, H., Mitra, K., & Will, Y. (2023). AI/ML Models to Predict the Severity of Drug-Induced Liver Injury for Small Molecules. *Chemical research in toxicology*, 36(7), 1129– 1139.
- Rathee, S., MacMahon, M., Liu, A., Katritsis, N. M., Youssef, G., Hwang, W., Wollman, L., & Han, N. (2022). DILI <sub>C</sub> : An AI-Based Classifier to Search for Drug-Induced Liver Injury Literature. *Frontiers in genetics*, *13*, 867946.
- Shiwlani, A., Ahmad, A., Umar, M., Dharejo, N., Tahir, A., & Shiwlani, S. (2024). BI-RADS Category Prediction from Mammography Images and Mammography Radiology Reports Using Deep Learning: A Systematic Review. *Scientific Journal of Computer Science*, 3 (1), 30-49.
- Shiwlani, A., Kumar, S., Hasan, SU, Kumar, S., & Naguib, JS Advancing Hepatology with AI: A Systematic Review of Early Detection Models for Hepatitis-Associated Liver Cancer.
- Shiwlani, A., Kumar, S., Kumar, S., Qureshi, H.A., & Naguib, J.S. AI-Assisted Genotype Analysis of Hepatitis Viruses: A Systematic Review on Precision Therapy and Sequencing Innovations.
- Su, R., Wu, H., Xu, B., Liu, X., & Wei, L. (2019). Developing a Multi-Dose Computational Model for Drug-Induced Hepatotoxicity Prediction Based on Toxicogenomics Data. *IEEE/ACM transactions on computational biology and bioinformatics*, 16(4), 1231–1239.
- Tang, T., Gan, X., Zhou, L., Pu, K., Wang, H., Dai, W., ... & Zhang, Y. (2023). Exploring the Hepatotoxicity of Drugs through Machine Learning and Network Toxicological Methods. *Current Bioinformatics*, 18(6), 484-496.
- Vall, A., Sabnis, Y., Shi, J., Class, R., Hochreiter, S., & Klambauer, G. (2021). The Promise of AI for DILI Prediction. *Frontiers in artificial intelligence*, *4*, 638410.
- Villanueva-Paz, M., Niu, H., Segovia-Zafra, A., Medina-Caliz, I., Sanabria-Cabrera, J., Lucena, M. I., ... & Alvarez-Alvarez, I. (2021). Critical review of gaps in the diagnosis and management of drug-induced liver injury associated with severe cutaneous adverse reactions. *Journal of Clinical Medicine*, 10(22), 5317.
- Wang, K., Zhang, L., Li, L., Wang, Y., Zhong, X., Hou, C., Zhang, Y., Sun, C., Zhou, Q., & Wang, X. (2022). Identification of Drug-Induced Liver Injury Biomarkers from Multiple Microarrays Based on Machine Learning and Bioinformatics Analysis. *International journal of molecular sciences*, 23(19), 11945
- Williams, D. P., Lazic, S. E., Foster, A. J., Semenova, E., & Morgan, P. (2020). Predicting Drug-Induced Liver Injury with Bayesian Machine Learning. *Chemical research in toxicology*, 33(1), 239–248
- Wu, W., Qian, J., Liang, C., Yang, J., Ge, G., Zhou, Q., & Guan, X. (2023). GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation. *Chemical research in toxicology*, 36(11), 1717–1730.
- Xiao, Y., Chen, Y., Huang, R., Jiang, F., Zhou, J., & Yang, T. (2024). Interpretable machine learning in predicting drug-induced liver injury among tuberculosis patients: model development and validation study. *BMC medical research methodology*, *24*(1), 92.

- Yan, B., Ye, X., Wang, J., Han, J., Wu, L., He, S., Liu, K., & Bo, X. (2022). An Algorithm Framework for Drug-Induced Liver Injury Prediction Based on Genetic Algorithm and Ensemble Learning. *Molecules (Basel, Switzerland)*, *27*(10), 3112.
- Yang, Q., Zhang, S., & Li, Y. (2024). Deep Learning Algorithm Based on Molecular Fingerprint for Prediction of Drug-Induced Liver Injury. *Toxicology*, *502*, 153736.
- Yen, J. S., Hu, C. C., Huang, W. H., Hsu, C. W., Yen, T. H., & Weng, C. H. (2021). An artificial intelligence algorithm for analyzing acetaminophen-associated toxic hepatitis. *Human* & *Experimental Toxicology*, 40(11), 1947-1954
- Zhan, X., Wang, F., & Gevaert, O. (2022). Reliably Filter Drug-Induced Liver Injury Literature With Natural Language Processing and Conformal Prediction. *IEEE journal of biomedical and health informatics*, *26*(10), 5033–5041.
- Zhao, Y., Zhang, Z., Kong, X., Wang, K., Wang, Y., Jia, J., Li, H., & Tian, S. (2024). Prediction of Drug-Induced Liver Injury: From Molecular Physicochemical Properties and Scaffold Architectures to Machine Learning Approaches. Chemical biology & drug design, 104(2), e14607.
- Zhong, T., Zhuang, Z., Dong, X., Wong, K. H., Wong, W. T., Wang, J., ... & Liu, S. (2021). Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. *JMIR medical informatics*, 9(7), e29226.